TY - GEN
T1 - A Fused Gromov-Wasserstein Framework for Unsupervised Knowledge Graph Entity Alignment
AU - Tang, Jianheng
AU - Zhao, Kangfei
AU - Li, Jia
N1 - Publisher Copyright:
© 2023 Association for Computational Linguistics.
PY - 2023
Y1 - 2023
N2 - Entity alignment is the task of identifying corresponding entities across different knowledge graphs (KGs). Although recent embedding-based entity alignment methods have shown significant advancements, they still struggle to fully utilize KG structural information. In this paper, we introduce FGWEA, an unsupervised entity alignment framework that leverages the Fused Gromov-Wasserstein (FGW) distance, allowing for a comprehensive comparison of entity semantics and KG structures within a joint optimization framework. To address the computational challenges associated with optimizing FGW, we devise a three-stage progressive optimization algorithm. It starts with a basic semantic embedding matching, proceeds to approximate cross-KG structural and relational similarity matching based on iterative updates of high-confidence entity links, and ultimately culminates in a global structural comparison between KGs. We perform extensive experiments on four entity alignment datasets covering 14 distinct KGs across five languages. Without any supervision or hyper-parameter tuning, FGWEA surpasses 21 competitive baselines, including cutting-edge supervised entity alignment methods. Our code is available at https://github.com/squareRoot3/FusedGW-Entity-Alignment.
AB - Entity alignment is the task of identifying corresponding entities across different knowledge graphs (KGs). Although recent embedding-based entity alignment methods have shown significant advancements, they still struggle to fully utilize KG structural information. In this paper, we introduce FGWEA, an unsupervised entity alignment framework that leverages the Fused Gromov-Wasserstein (FGW) distance, allowing for a comprehensive comparison of entity semantics and KG structures within a joint optimization framework. To address the computational challenges associated with optimizing FGW, we devise a three-stage progressive optimization algorithm. It starts with a basic semantic embedding matching, proceeds to approximate cross-KG structural and relational similarity matching based on iterative updates of high-confidence entity links, and ultimately culminates in a global structural comparison between KGs. We perform extensive experiments on four entity alignment datasets covering 14 distinct KGs across five languages. Without any supervision or hyper-parameter tuning, FGWEA surpasses 21 competitive baselines, including cutting-edge supervised entity alignment methods. Our code is available at https://github.com/squareRoot3/FusedGW-Entity-Alignment.
UR - http://www.scopus.com/inward/record.url?scp=85175488767&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85175488767
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 3320
EP - 3334
BT - Findings of the Association for Computational Linguistics, ACL 2023
PB - Association for Computational Linguistics (ACL)
T2 - 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Y2 - 9 July 2023 through 14 July 2023
ER -