TY - JOUR
T1 - A codon-based live-cell biomonitoring system for assessing intracellular phenylalanine bioavailability in cyanobacteria
AU - Jin, Haojie
AU - Zhang, Jiaqi
AU - Wang, Yan
AU - Ge, Wanzhao
AU - Jing, Yike
AU - Cao, Xiaoyu
AU - Huo, Yixin
AU - Fu, Yujie
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2024/1/15
Y1 - 2024/1/15
N2 - Phenylalanine, as an essential aromatic amino acid, is not only needed for protein and vital molecules such as neurotransmitter and hormone synthesis but also a substrate for the biosynthesis of phenylpropanoids and various bioactive compounds. The metabolism of phenylalanine is dynamic and transitory, which would otherwise inhibit cell growth. Therefore, it is challenging and imperative to monitor intracellular phenylalanine bioavailability in real time, which has great significance for evaluating the effectiveness of introducing pathway-specific genetic modifications to enhance phenylalanine generation. In this study, we proposed a live-cell biomonitoring system to assess phenylalanine bioavailability in real time in cyanobacteria based on codon degeneracy and species-specific usage bias. The biomonitoring system was generated through genetic modification of phenylalanine codons in the chloramphenicol antibiotic resistance gene to wholly preferred and rare codons, in combination with an orthogonal constitutive promoter Trc to express these genes. Cyanobacterial cells equipped with a preferred codon-based gene showed a significant growth advantage over those with rare codons under antibiotic pressure, while the delayed growth caused by rare codon-based genes could be rescued by supplementing phenylalanine in the cultivation medium. Increasing intracellular phenylalanine bioavailability could promote rare codon-based gene containing cell growth to a similar level as wild-type strains harboring preferred codon-based gene, providing a live-cell visualized screening method to relatively define phenylalanine content from either random mutation libraries or pathway-specific engineering cyanobacterial chassis before conducting labor-intensive quantitative measurements.
AB - Phenylalanine, as an essential aromatic amino acid, is not only needed for protein and vital molecules such as neurotransmitter and hormone synthesis but also a substrate for the biosynthesis of phenylpropanoids and various bioactive compounds. The metabolism of phenylalanine is dynamic and transitory, which would otherwise inhibit cell growth. Therefore, it is challenging and imperative to monitor intracellular phenylalanine bioavailability in real time, which has great significance for evaluating the effectiveness of introducing pathway-specific genetic modifications to enhance phenylalanine generation. In this study, we proposed a live-cell biomonitoring system to assess phenylalanine bioavailability in real time in cyanobacteria based on codon degeneracy and species-specific usage bias. The biomonitoring system was generated through genetic modification of phenylalanine codons in the chloramphenicol antibiotic resistance gene to wholly preferred and rare codons, in combination with an orthogonal constitutive promoter Trc to express these genes. Cyanobacterial cells equipped with a preferred codon-based gene showed a significant growth advantage over those with rare codons under antibiotic pressure, while the delayed growth caused by rare codon-based genes could be rescued by supplementing phenylalanine in the cultivation medium. Increasing intracellular phenylalanine bioavailability could promote rare codon-based gene containing cell growth to a similar level as wild-type strains harboring preferred codon-based gene, providing a live-cell visualized screening method to relatively define phenylalanine content from either random mutation libraries or pathway-specific engineering cyanobacterial chassis before conducting labor-intensive quantitative measurements.
KW - Codon usage bias
KW - Cyanobacteria
KW - Phenylalanine
KW - Protein amount assay
UR - http://www.scopus.com/inward/record.url?scp=85175341128&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2023.115792
DO - 10.1016/j.bios.2023.115792
M3 - Article
C2 - 37922807
AN - SCOPUS:85175341128
SN - 0956-5663
VL - 244
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 115792
ER -