Title: Associate Professor, Doctoral Supervisor
Contact number:
Department: Computational Physics
E-mail: gbliu@bit.edu.cn
Address: B-304, Building of Science, No.8 Liangxiang East Road, Fangshan District, Beijing
His research interests are condensed matter Theoretical Physics and Computational Physics:
(1) Models and computational studies of the electronic structure of condensed matter and its novel physical properties in terms of electricity, light, spin, energy valley, and topology;
(2) The application of symmetry and group theory methods in condensed matter physics;
(3) The development of relevant calculation methods and the development of calculation tools mentioned in the previous two points.
2000-2004 Bachelor of Science + Bachelor of Computer Science, Department of Astronomy and Applied Physics, University of Science and Technology of China (br>)
2004-2010 Doctor of Science, Institute of Physics, Chinese Academy of Sciences
2010-2012 Postdoctoral Fellow, Department of Physics, University of Hong Kong
2012-2015 School of Physics, Beijing Institute of Technology, Lecturer
2015-present Associate Professor, School of Physics, Beijing Institute of Technology
[28]G.-B. Liu*, Z. Zhang, Z.-M. Yu, and Y. Yao*, MSGCorep: A package for corepresentations of magnetic space groups, Comput. Phys. Commun. 288, 108722 (2023).
[27]Z. Zhang, W. Wu, G.-B. Liu, Z.-M. Yu, S. A. Yang, and Y. Yao, Encyclopedia of emergent particles in 528 magnetic layer groups and 394 magnetic rod groups, Phys. Rev. B 107, 075405 (2023).
[26]G.-B. Liu#, Z. Zhang#, Z.-M. Yu, S. A. Yang, and Y. Yao*, Systematic investigation of emergent particles in type-III magnetic space groups, Phys. Rev. B 105, 085117 (2022).
[25]Z. Zhang, Z.-M. Yu, G.-B. Liu*, and Y. Yao*, MagneticTB: A package for tight-binding model of magnetic and non-magnetic materials, Comput. Phys. Commun. 270, 108153 (2022).
[24]Z. Zhang#, G.-B. Liu#, Z.-M. Yu, S. A. Yang, and Y. Yao*, Encyclopedia of emergent particles in type-IV magnetic space groups, Phys. Rev. B 105, 104426 (2022).
[23]Z.-M. Yu, Z. Zhang, G.-B. Liu, W. Wu, X.-P. Li, R.-W. Zhang, S. A. Yang, and Y. Yao, Encyclopedia of emergent particles in three-dimensional crystals, Sci. Bull. 67, 375 (2022).
[22]G.-B. Liu*, M. Chu, Z. Zhang, Z.-M. Yu, and Y. Yao*, SpaceGroupIrep: A package for irreducible representations of space group, Comput. Phys. Commun. 265, 107993 (2021).
[21]C.-Y. Ji, G.-B. Liu, Y. Zhang, B. Zou, and Y. Yao, Transport tuning of photonic topological edge states by optical cavities, Phys. Rev. A 99, 043801 (2019).
[20]L. Du, M. Liao, G.-B. Liu*, Q. Wang, R. Yang, D. Shi, Y. Yao, and G. Zhang*, Strongly distinct electrical response between circular and valley polarization in bilayer transition metal dichalcogenides, Phys. Rev. B 99, 195415 (2019).
[19]Z.-X. Wei and G.-B. Liu*, First-principles studies of graphene antidot lattices on monolayer h-BN substrate, Phys. Lett. A 383, 125944 (2019).
[18]H. Yu, G.-B. Liu, and W. Yao, Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers, 2D Mater. 5, 035021 (2018).
[17]M. Wang, G.-B. Liu*, H. Guo, and Y. Yao*, An efficient method for hybrid density functional calculation with spinorbit coupling, Comput. Phys. Commun. 224, 90 (2018).
[16]H. Yu, G.-B. Liu, J. Tang, X. Xu, and W. Yao, Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices, Sci. Adv. 3, e1701696 (2017).
[15]Y. Wang, Z. Wang, W. Yao, G.-B. Liu*, and H. Yu*, Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides, Phys. Rev. B 95, 115429 (2017).
[14]Z. Wu#, S. Xu#, H. Lu#, A. Khamoshi#, G.-B. Liu#, T. Han, Y. Wu, J. Lin, G. Long, Y. He, Y. Cai, Y. Yao, F. Zhang*, and N. Wang*, Even-odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides, Nature Commun. 7, 12955 (2016).
[13]G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides, Chem. Soc. Rev. 44, 2643 (2015).
[12]H. Yu, Y. Wu, G.-B. Liu, X. Xu, and W. Yao, Nonlinear Valley and Spin Currents from Fermi Pocket Anisotropy in 2D Crystals, Phys. Rev. Lett. 113, 156603 (2014).
[11]G.-B. Liu, H. Pang, Y. Yao, and W. Yao, Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides, New J. Phys. 16, 105011 (2014).
[10]H. Yu, G.-B. Liu, P. Gong, X. Xu, and W. Yao, Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides, Nature Commun. 5, 3876 (2014).
[9]G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides, Phys. Rev. B 88, 085433 (2013).
[8]Z. Gong#, G.-B. Liu#, H. Yu, D. Xiao, X. Cui, X. Xu, and W. Yao, Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers, Nature Commun. 4, 2053 (2013).
[7]S. Wu, J. S. Ross, G.-B. Liu, G. Aivazian, A. Jones, Z. Fei, W. Zhu, D. Xiao, W. Yao, D. Cobden, and X. Xu, Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2, Nature Phys. 9, 149 (2013).
[6]D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides, Phys. Rev. Lett. 108, 196802 (2012).
[5]G.-B. Liu and B.-G. Liu, Dynamical Monte Carlo investigation of spin reversal and nonequilibrium magnetization of single-molecule magnets, Phys. Rev. B 82, 134410 (2010).
[4]G.-B. Liu and B.-G. Liu, Temperature-dependent striped antiferromagnetism of LaFeAsO in a Green’s function approach, J. Phys. Condens. Matter 21, 195701 (2009).
[3]G.-B. Liu and B.-G. Liu, Nonequilibrium dynamical ferromagnetism of interacting single-molecule magnets, Appl. Phys. Lett. 95, 183110 (2009).
[2]G.-B. Liu and B.-G. Liu, A Green’s function model for ferromagnetism and spin excitations of (Ga,Mn)As diluted magnetic semiconductors, Chin. Phys. B 18, 5047 (2009).
[1]G.-B. Liu and B.-G. Liu, Domain structures of ultrathin magnetic nanobelts, Phys. Lett. A 372, 3857 (2008).
"