Unsupervised Conditional Diffusion Models in Video Anomaly Detection for Monitoring Dust Pollution

Limin Cai, Mofei Li, Dianpeng Wang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Video surveillance is widely used in monitoring environmental pollution, particularly harmful dust. Currently, manual video monitoring remains the predominant method for analyzing potential pollution, which is inefficient and prone to errors. In this paper, we introduce a new unsupervised method based on latent diffusion models. Specifically, we propose a spatio-temporal network structure, which better integrates the spatial and temporal features of videos. Our conditional guidance mechanism samples frames of input videos to guide high-quality generation and obtains frame-level anomaly scores, comparing generated videos with original ones. We also propose an efficient compression strategy to reduce computational costs, allowing the model to perform in a latent space. The superiority of our method was demonstrated by numerical experiments in three public benchmarks and practical application analysis in coal mining over previous SOTA methods with better AUC, of at most over 3%. Our method accurately detects abnormal patterns in multiple challenging environmental monitoring scenarios, illustrating the potential application possibilities in the environmental protection domain and beyond.

源语言英语
文章编号1464
期刊Sensors
24
5
DOI
出版状态已出版 - 3月 2024

指纹

探究 'Unsupervised Conditional Diffusion Models in Video Anomaly Detection for Monitoring Dust Pollution' 的科研主题。它们共同构成独一无二的指纹。

引用此