Unsupervised Active Learning via Subspace Learning

Changsheng Li*, Kaihang Mao, Lingyan Liang, Dongchun Ren, Wei Zhang, Ye Yuan, Guoren Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

9 引用 (Scopus)

摘要

Unsupervised active learning has been an active research topic in machine learning community, with the purpose of choosing representative samples to be labelled in an unsupervised manner. Previous works usually take the minimization of data reconstruction loss as the criterion to select representative samples, by which the original inputs can be better approximated. However, data are often drawn from low-dimensional subspaces embedded in an arbitrary high-dimensional space in many scenarios, thus it might severely bring in noise if attempting to precisely reconstruct all entries of one observation, leading to a suboptimal solution. In view of this, this paper proposes a novel unsupervised Active Learning model via Subspace Learning, called ALSL. In contrast to previous approaches, ALSL aims to discover low-rank structures of data, and then perform sample selection based on the learnt low-rank representations. To this end, we devise two different strategies and propose two corresponding formulations to select samples with and under low-rank sample representations, respectively. Since the proposed formulations involve several non-smooth regularization terms, we develop a simple but effective optimization procedure to solve them. Extensive experiments are performed on five publicly available datasets, and experimental results demonstrate the proposed first formulation achieves comparable performance with the state-of-the-arts, while the second formulation significantly outperforms them, achieving a 13% improvement over the second best baseline at most.

源语言英语
主期刊名35th AAAI Conference on Artificial Intelligence, AAAI 2021
出版商Association for the Advancement of Artificial Intelligence
8332-8339
页数8
ISBN(电子版)9781713835974
出版状态已出版 - 2021
活动35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
期限: 2 2月 20219 2月 2021

出版系列

姓名35th AAAI Conference on Artificial Intelligence, AAAI 2021
9B

会议

会议35th AAAI Conference on Artificial Intelligence, AAAI 2021
Virtual, Online
时期2/02/219/02/21

指纹

探究 'Unsupervised Active Learning via Subspace Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此