Uncertainty-aware Pseudo Label Refinery for Entity Alignment

Jia Li, Dandan Song*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

29 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 29
  • Captures
    • Readers: 8
see details

摘要

Entity alignment (EA), which aims to discover equivalent entities in knowledge graphs (KGs), bridges heterogeneous sources of information and facilitates the integration of knowledge. Recently, based on translational models, EA has achieved impressive performance in utilizing graph structures or by adopting auxiliary information. However, existing entity alignment methods mainly rely on manually labeled entity alignment seeds, limiting their applicability in real scenarios. In this paper, a simple but effective Uncertainty-aware Pseudo Label Refinery (UPLR) framework is proposed without manually labeling requirement and is capable of learning high-quality entity embeddings from pseudo-labeled data sets containing noisy data. Our proposed model relies on two key factors: First, a non-sampling calibration strategy is provided that does not require artificially designed thresholds to reduce the influence of noise labels. Second, the entity alignment model achieves goal-oriented uncertainty correction through a gradual enhancement strategy. Experimental results on benchmark datasets demonstrate that our proposed model outperforms the existing supervised methods in cross-lingual knowledge graph tasks. Our source code is available at: https://github.com/Jia-Li2/UPLR/.

源语言英语
主期刊名WWW 2022 - Proceedings of the ACM Web Conference 2022
出版商Association for Computing Machinery, Inc
829-837
页数9
ISBN(电子版)9781450390965
DOI
出版状态已出版 - 25 4月 2022
活动31st ACM World Wide Web Conference, WWW 2022 - Virtual, Online, 法国
期限: 25 4月 202229 4月 2022

出版系列

姓名WWW 2022 - Proceedings of the ACM Web Conference 2022

会议

会议31st ACM World Wide Web Conference, WWW 2022
国家/地区法国
Virtual, Online
时期25/04/2229/04/22

指纹

探究 'Uncertainty-aware Pseudo Label Refinery for Entity Alignment' 的科研主题。它们共同构成独一无二的指纹。

引用此

Li, J., & Song, D. (2022). Uncertainty-aware Pseudo Label Refinery for Entity Alignment. 在 WWW 2022 - Proceedings of the ACM Web Conference 2022 (页码 829-837). (WWW 2022 - Proceedings of the ACM Web Conference 2022). Association for Computing Machinery, Inc. https://doi.org/10.1145/3485447.3511926