Ultrasound-Assisted Guidance with Force Cues for Intravascular Interventions

Jin Guo, Chaoyang Shi, Hongliang Ren*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

30 引用 (Scopus)

摘要

Image guidance during minimally invasive intravascular interventions is primarily achieved based on X-ray fluoroscopy, which has several limitations including limited 3-D imaging capability, significant doses of radiation to operators, and lack of contact force measurement between the cardiovascular tissue and interventional tools. Ultrasound imaging can be adopted to complement or possibly replace 2-D fluoroscopy for intravascular interventions due to its portability, safety to use, and the ability of providing depth information. However, it is challenging to precisely visualize catheters and guidewires in the ultrasound images. In this paper, we propose a novel method to figure out both the position and orientation of the catheter tip in 2-D ultrasound images in real time by detecting and tracking a passive marker attached to the catheter tip. Moreover, the contact force can be estimated simultaneously as well via measuring the length variation of the marker. A geometrical model-based method is introduced to detect the initial position of the marker, and a Kanade-Lucas-Tomasi-based algorithm is developed to track the position, orientation, and length of the marker. The ex vivo experiment results validate the effectiveness of the proposed approach in automatically locating the catheter tip in ultrasound images and its capability of sensing the contact force. Therefore, it can be concluded that the presented method can be utilized to better facilitate operators during intravascular interventions.

源语言英语
文章编号8341756
页(从-至)253-260
页数8
期刊IEEE Transactions on Automation Science and Engineering
16
1
DOI
出版状态已出版 - 1月 2019
已对外发布

指纹

探究 'Ultrasound-Assisted Guidance with Force Cues for Intravascular Interventions' 的科研主题。它们共同构成独一无二的指纹。

引用此