摘要
Metasurfaces are ultra-thin artificial structures capable of flexibly manipulating electromagnetic (EM) waves. Among various applications, phase modulation of electromagnetic (EM) waves using metasurfaces holds great significance. The Pancharatnam-Berry (P-B) metasurfaces provides a complete 2π phase modulation by simply rotating the meta-atom. However, the fixed lattice in rotation employed by traditional P-B metasurfaces often results in unstable amplitude and imprecise P-B phase, leading to performance degradation. In this work, we demonstrate transmissive P-B metasurfaces with stable amplitude and precise phase modulation. To ensure stable amplitude and precise P-B phase, we adopt a dartboard discretization configuration with a hexagonal lattice for the meta-atom design. By applying topology optimization to the encoding sequence formed by surface pixels and dimensions, we significantly enhancing the high transmissive bandwidth of the optimized meta-atom. Furthermore, the optimized meta-atom exhibits a stable amplitude and precise P-B phase for each rotation angle. As proof-of-concept demonstrations, two metasurfaces for single and multiplexed vortex beams generating are designed utilizing the optimized meta-atom. Both the simulated and measured results indicate high mode purity of generated vortex beams. The design method can also be readily extended to other high performance metasurfaces with stable amplitude and precise phase manipulations, which can enhance the efficiency and capacity of metasurface-assisted holographic imaging and 6 G wireless communication systems.
源语言 | 英语 |
---|---|
页(从-至) | 30815-30831 |
页数 | 17 |
期刊 | Optics Express |
卷 | 31 |
期 | 19 |
DOI | |
出版状态 | 已出版 - 11 9月 2023 |