摘要
To address the issue of trajectory fragments and ID switches caused by occlusion in dense crowds, we propose a space-time trajectory encoding method and a point-line-group division method to construct Trajectory-BERT in this paper. Leveraging the spatiotemporal context-dependent features of trajectories, we introduce pre-training and fine-tuning Trajectory-BERT tasks to repair occluded trajectories. Experimental results show that data augmented with Trajectory-BERT outperforms raw annotated data on the MOTA metric and reduces ID switches in raw labeled data, demonstrating the feasibility of our method.
源语言 | 英语 |
---|---|
文章编号 | e2190 |
期刊 | Computer Animation and Virtual Worlds |
卷 | 34 |
期 | 3-4 |
DOI | |
出版状态 | 已出版 - 1 5月 2023 |
指纹
探究 'Trajectory-BERT: Pre-training and fine-tuning bidirectional transformers for crowd trajectory enhancement' 的科研主题。它们共同构成独一无二的指纹。引用此
Li, L., Huang, T., Li, Y., & Li, P. (2023). Trajectory-BERT: Pre-training and fine-tuning bidirectional transformers for crowd trajectory enhancement. Computer Animation and Virtual Worlds, 34(3-4), 文章 e2190. https://doi.org/10.1002/cav.2190