Trajectory-BERT: Pre-training and fine-tuning bidirectional transformers for crowd trajectory enhancement

Lingyu Li, Tianyu Huang*, Yihao Li, Peng Li

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

To address the issue of trajectory fragments and ID switches caused by occlusion in dense crowds, we propose a space-time trajectory encoding method and a point-line-group division method to construct Trajectory-BERT in this paper. Leveraging the spatiotemporal context-dependent features of trajectories, we introduce pre-training and fine-tuning Trajectory-BERT tasks to repair occluded trajectories. Experimental results show that data augmented with Trajectory-BERT outperforms raw annotated data on the MOTA metric and reduces ID switches in raw labeled data, demonstrating the feasibility of our method.

源语言英语
文章编号e2190
期刊Computer Animation and Virtual Worlds
34
3-4
DOI
出版状态已出版 - 1 5月 2023

指纹

探究 'Trajectory-BERT: Pre-training and fine-tuning bidirectional transformers for crowd trajectory enhancement' 的科研主题。它们共同构成独一无二的指纹。

引用此