摘要
We study the phase diagram of the two-leg Kitaev model. Different topological phases can be characterized by either the number of Majorana modes for a deformed chain of the open ladder, or by a winding number related to the 'h-loop' in the momentum space. By adding a three-spin interaction term to break the time-reversal symmetry, two originally different phases are glued together, so that the number of Majorana modes reduce to 0 or 1, namely, the topological invariant collapses to Z2 from an integer Z. These observations are consistent with a recent general study [S. Tewari, J.D. Sau, arXiv:1111.6592v2].
源语言 | 英语 |
---|---|
页(从-至) | 3530-3534 |
页数 | 5 |
期刊 | Physics Letters, Section A: General, Atomic and Solid State Physics |
卷 | 376 |
期 | 46 |
DOI | |
出版状态 | 已出版 - 15 10月 2012 |
已对外发布 | 是 |
指纹
探究 'Topological phases of the two-leg Kitaev ladder' 的科研主题。它们共同构成独一无二的指纹。引用此
Wu, N. (2012). Topological phases of the two-leg Kitaev ladder. Physics Letters, Section A: General, Atomic and Solid State Physics, 376(46), 3530-3534. https://doi.org/10.1016/j.physleta.2012.10.016