The Shock-Induced Deformation and Spallation Failure of Bicrystal Copper with a Nanoscale Helium Bubble via Molecular Dynamics Simulations

Qi Zhu, Jianli Shao*, Pei Wang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Both the nanoscale helium (He) bubble and grain boundaries (GBs) play important roles in the dynamic mechanical behavior of irradiated nanocrystalline materials. Using molecular dynamics simulations, we study the shock-induced deformation and spallation failure of bicrystal copper with a nanoscale He bubble. Two extreme loading directions (perpendicular or parallel to the GB plane) and various impact velocities (0.5–2.5 km/s) are considered. Our results reveal that the He bubble shows hindrance to the propagation of shock waves at lower impact velocities but will accelerate shock wave propagation at higher impact velocities due to the local compression wave generated by the collapse of the He bubble. The parallel loading direction is found to have a greater effect on He bubble deformation during shock compression. The He bubble will slightly reduce the spall strength of the material at lower impact velocities but has a limited effect on the spallation process, which is dominated by the evolution of the GB. At lower impact velocities, the mechanism of spall damage is dominated by the cleavage fracture along the GB plane for the perpendicular loading condition but dominated by the He bubble expansion and void growth for the parallel loading condition. At higher impact velocities, micro-spallation occurs for both loading conditions, and the effects of GBs and He bubbles can be ignored.

源语言英语
文章编号2308
期刊Nanomaterials
13
16
DOI
出版状态已出版 - 8月 2023

指纹

探究 'The Shock-Induced Deformation and Spallation Failure of Bicrystal Copper with a Nanoscale Helium Bubble via Molecular Dynamics Simulations' 的科研主题。它们共同构成独一无二的指纹。

引用此