The Relative Eta Invariant for a Pair of Dirac-Type Operators on Non-Compact Manifolds

Pengshuai Shi*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Let A0 and A1 be two self-adjoint Fredholm Dirac-type operators defined on two non-compact manifolds. If they coincide at infinity so that the relative heat operator is trace class, one can define their relative eta function as in the compact case. The regular value of this function at the zero point, which we call the relative eta invariant of A0 and A1, is a generalization of the eta invariant to a non-compact situation. We study its variation formula and gluing law. In particular, under certain conditions, we show that this relative eta invariant coincides with the relative eta invariant that we previously defined using the APS index of strongly Callias-type operators.

源语言英语
页(从-至)1923-1966
页数44
期刊Indiana University Mathematics Journal
71
5
DOI
出版状态已出版 - 2022

指纹

探究 'The Relative Eta Invariant for a Pair of Dirac-Type Operators on Non-Compact Manifolds' 的科研主题。它们共同构成独一无二的指纹。

引用此