The Periplectic Brauer Algebra III: The Deligne Category

Kevin Coulembier*, Michael Ehrig

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

7 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 7
  • Captures
    • Readers: 2
see details

摘要

We construct a faithful categorical representation of an infinite Temperley-Lieb algebra on the periplectic analogue of Deligne’s universal monoidal category. We use the corresponding combinatorics to classify thick tensor ideals in this periplectic Deligne category. This allows us to determine the objects in the kernel of the monoidal functor going to the module category of the periplectic Lie supergroup. We use this to classify indecomposable direct summands in the tensor powers of the natural representation, determine which are projective and determine their simple top.

源语言英语
页(从-至)993-1027
页数35
期刊Algebras and Representation Theory
24
4
DOI
出版状态已出版 - 8月 2021

指纹

探究 'The Periplectic Brauer Algebra III: The Deligne Category' 的科研主题。它们共同构成独一无二的指纹。

引用此

Coulembier, K., & Ehrig, M. (2021). The Periplectic Brauer Algebra III: The Deligne Category. Algebras and Representation Theory, 24(4), 993-1027. https://doi.org/10.1007/s10468-020-09976-8