摘要
In order to overcome the standard particle swarm optimization algorithm which is easily trapped in local minima and optimize the shortcoming of low precision, this paper proposed a way which can make multiple information exchange between particles come true: the multiple population co-evolution PSO algorithm. This paper proposes a multiple population co-evolutionary algorithm to achieve communication among populations, and then show the feasibility and effectiveness of this algorithm through experiments.
源语言 | 英语 |
---|---|
主期刊名 | Advances in Swarm Intelligence - 5th International Conference, ICSI 2014, Proceedings |
编辑 | Ying Tan, Yuhui Shi, Carlos A. Coello Coello |
出版商 | Springer Verlag |
页 | 434-441 |
页数 | 8 |
ISBN(电子版) | 9783319118963 |
DOI | |
出版状态 | 已出版 - 2014 |
活动 | 5th International Conference on Advances in Swarm Intelligence, ICSI 2014 - Hefei, 中国 期限: 17 10月 2014 → 20 10月 2014 |
出版系列
姓名 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
卷 | 8795 |
ISSN(印刷版) | 0302-9743 |
ISSN(电子版) | 1611-3349 |
会议
会议 | 5th International Conference on Advances in Swarm Intelligence, ICSI 2014 |
---|---|
国家/地区 | 中国 |
市 | Hefei |
时期 | 17/10/14 → 20/10/14 |
指纹
探究 'The multiple population co-evolution PSO algorithm' 的科研主题。它们共同构成独一无二的指纹。引用此
Xiao, X., & Zhang, Q. (2014). The multiple population co-evolution PSO algorithm. 在 Y. Tan, Y. Shi, & C. A. C. Coello (编辑), Advances in Swarm Intelligence - 5th International Conference, ICSI 2014, Proceedings (页码 434-441). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 卷 8795). Springer Verlag. https://doi.org/10.1007/978-3-319-11897-0_49