The fractional Fourier transform on graphs

Yi Qian Wang, Bing Zhao Li, Qi Yuan Cheng

科研成果: 书/报告/会议事项章节会议稿件同行评审

22 引用 (Scopus)

摘要

The emerging field of signal processing on graphs merges algebraic or spectral graph theory with discrete signal processing techniques to process signals on graphs. In this paper, a definition of the fractional Fourier transform on graphs (GFRFT) is proposed and consolidated, which extends the discrete fractional Fourier transform (DFRFT) in the same sense the graph Fourier transform (GFT) extends the discrete Fourier transform (DFT). The definition is based on the eigenvalue decomposition method of defining DFRFT, for it satisfies all the agreeable properties expected of the discrete fractional Fourier transform. Properties of the GFRFT are discussed, and examples of GFRFT of some graph signals are given to illustrate the transform.

源语言英语
主期刊名Proceedings - 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017
出版商Institute of Electrical and Electronics Engineers Inc.
105-110
页数6
ISBN(电子版)9781538615423
DOI
出版状态已出版 - 2 7月 2017
活动9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017 - Kuala Lumpur, 马来西亚
期限: 12 12月 201715 12月 2017

出版系列

姓名Proceedings - 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017
2018-February

会议

会议9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017
国家/地区马来西亚
Kuala Lumpur
时期12/12/1715/12/17

指纹

探究 'The fractional Fourier transform on graphs' 的科研主题。它们共同构成独一无二的指纹。

引用此