The effects of submergence depth on Vortex-Induced Vibration (VIV) and energy harvesting of a circular cylinder

Mengfan Gu, Baowei Song, Baoshou Zhang*, Zhaoyong Mao, Wenlong Tian

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

47 引用 (Scopus)

摘要

Vortex-Induced Vibration (VIV) is a kind of high-energy phenomena and can be used to harvest energy from ocean/river currents. In this paper, a spring-mounted circular cylinder in VIV was numerically investigated with 2-dimensional simulations to examine the effects of submergence depth on the energy conversion. The flow speed changes from 0.2 m/s to 1.3 m/s (1.61 × 104<Reynolds number<1.05 × 105), covering three different VIV branches (i.e. initial branch, upper branch and lower branch). The submergence depth changes from 0.1 m to 0.5 m. Results indicate that proximity to the free surface significantly affects the VIV responses. As the submergence depth decreases from 0.5 m to 0.1 m, the VIV amplitude is gradually suppressed resulting in a similar drop in energy conversion. The maximum energy conversion efficiency (34.7%) is achieved in the VIV upper branch with the submergence depth S = 0.5 m. When the submergence depth reaches up to the critical submergence depth S = 0.5 m, the VIV amplitude and converted power no longer increase, which means the effects of submergence depth or the disturbance from the free surface can be ignored. It is also found that when the flow speed exceeds 1.2 m/s (Reynolds number>9.7 × 104), the oscillation amplitude of the cylinder decreases to zero. In this case, the oscillation response doesn't belong to VIV.

源语言英语
页(从-至)931-945
页数15
期刊Renewable Energy
151
DOI
出版状态已出版 - 5月 2020
已对外发布

指纹

探究 'The effects of submergence depth on Vortex-Induced Vibration (VIV) and energy harvesting of a circular cylinder' 的科研主题。它们共同构成独一无二的指纹。

引用此