The design and evaluation of a terminal-matching adaptive sampling algorithm

Haina Tang*, Liehuang Zhu, Xiaola Lin

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Sampling is an important means of data reduction for traffic analysis in large-scale and high-speed networks. The uniform random sampling method is not sufficient for the analysis of short flows which can produce significant impact on the accuracy of anomaly detection. Many adaptive packet sampling algorithms have been proposed in the current literature to solve this issue. However, those algorithms cannot automatically adapt to the variety of hardware processing capabilities and traffic injection rate. To this end, this paper proposes a terminal-matching adaptive sampling algorithm, called Sketch Guided Adaptive Sampling (SGAS), by combining the schemes of segmented sampling and fair packet sampling. The theoretical analysis proves that the proposed SGAS can tune the output of sampling functions dynamically by considering several key parameters, such as the packet rate of data flow and the processing capability of terminal monitoring system, to maximize the utilization of hardware resources. Through comparing with existing related algorithms in realistic network environments, the proposed SGAS can effectively improve the accuracy of packet sampling, e.g., the error rate of flow size estimation.

源语言英语
页(从-至)463-470
页数8
期刊Journal of Internet Technology
15
3
DOI
出版状态已出版 - 2014

指纹

探究 'The design and evaluation of a terminal-matching adaptive sampling algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此