Text categorization based on topic model

Shibin Zhou*, Kan Li, Yushu Liu

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

In the text literature, many topic models were proposed to represent documents and words as topics or latent topics in order to process text effectively and accurately. In this paper, we propose LDACLM or Latent Dirichlet Allocation Category Language Model for text categorization and estimate parameters of models by variational inference. As a variant of Latent Dirichlet Allocation Model, LDACLM regard documents of category as Language Model and use variational parameters to estimate maximum a posteriori of terms. Experiments show LDACLM model to be effective for text categorization, outperforming standard Naive Bayes and Rocchio method for text categorization.

源语言英语
主期刊名Rough Sets and Knowledge Technology - Third International Conference, RSKT 2008, Proceedings
572-579
页数8
DOI
出版状态已出版 - 2008
活动3rd International Conference on Rough Sets and Knowledge Technology, RSKT 2008 - Chengdu, 中国
期限: 17 5月 200819 5月 2008

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
5009 LNAI
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议3rd International Conference on Rough Sets and Knowledge Technology, RSKT 2008
国家/地区中国
Chengdu
时期17/05/0819/05/08

指纹

探究 'Text categorization based on topic model' 的科研主题。它们共同构成独一无二的指纹。

引用此