TY - JOUR
T1 - Ternary doping of Na+, Bi3+ and La3+ to improve piezoelectric constant and electrical resistivity simultaneously in calcium bismuth niobate ceramics
AU - Yu, Hongcai
AU - Hou, Qingquan
AU - Chen, Gongtian
AU - Ma, Chao
AU - Jiang, Xingan
AU - Hong, Jiawang
AU - Zhou, Zhiyong
AU - Liang, Ruihong
AU - Dong, Xianlin
AU - Xiao, Hanning
AU - Yang, Bin
N1 - Publisher Copyright:
© 2022 Elsevier Ltd and Techna Group S.r.l.
PY - 2023/4/1
Y1 - 2023/4/1
N2 - High Curie-temperature layer-structured calcium bismuth niobate (CaBi2Nb2O9) piezoelectric ceramics are promising for important application in high-temperature vibration sensors. However, such application is currently limited due to not only poor high-temperature piezoelectric constant (d33), which is attributable to spontaneous polarization along a-b plane and high coercive fields, but also inferior high-temperature electrical resistivity, which results from volatilization of Bi2O3 during the sintering process that increases defect concentration of oxygen vacancies. Herein, we report a Na+, Bi3+ and La3+ ternary-doping-strategy to obtain Ca0.8(Na0.5La0.3Bi0.2)0.2Bi2Nb2O9 ceramics, which exhibited higher piezoelectric constant and larger electrical resistivity as accompanied by a better thermal stability at high-temperatures. The piezoelectric constant was enhanced from 8.8 pC/N in pristine CaBi2Nb2O9 to 13.4 pC/N in Ca0.8(Na0.5La0.3Bi0.2)0.2Bi2Nb2O9 ceramics, which is ascribed to the presence of pseudo-tetragonal structural distortion after La3+ doping. In addition, the electrical resistivity at 600 °C was increased by more than one-order of magnitude from 3.7 × 104 Ω cm in pristine CaBi2Nb2O9 to 1.4 × 106 Ω cm in Ca0.8(Na0.5La0.3Bi0.2)0.2Bi2Nb2O9 ceramics. Such significant improvement in electrical resistivity results from the reduction in oxygen vacancies due to ternary doping of Na+, Bi3+ and La3+ and stronger binding interaction between La3+ dopants and O2− in (Bi2O2)2+ layers in Ca0.8(Na0.5La0.3Bi0.2)0.2Bi2Nb2O9 ceramics. This work demonstrates an important way of employing chemical doping to improve piezoelectric constant and electrical resistivity simultaneously at high-temperatures to tune structural distortion in bismuth-layered structural CaBi2Nb2O9 ceramics.
AB - High Curie-temperature layer-structured calcium bismuth niobate (CaBi2Nb2O9) piezoelectric ceramics are promising for important application in high-temperature vibration sensors. However, such application is currently limited due to not only poor high-temperature piezoelectric constant (d33), which is attributable to spontaneous polarization along a-b plane and high coercive fields, but also inferior high-temperature electrical resistivity, which results from volatilization of Bi2O3 during the sintering process that increases defect concentration of oxygen vacancies. Herein, we report a Na+, Bi3+ and La3+ ternary-doping-strategy to obtain Ca0.8(Na0.5La0.3Bi0.2)0.2Bi2Nb2O9 ceramics, which exhibited higher piezoelectric constant and larger electrical resistivity as accompanied by a better thermal stability at high-temperatures. The piezoelectric constant was enhanced from 8.8 pC/N in pristine CaBi2Nb2O9 to 13.4 pC/N in Ca0.8(Na0.5La0.3Bi0.2)0.2Bi2Nb2O9 ceramics, which is ascribed to the presence of pseudo-tetragonal structural distortion after La3+ doping. In addition, the electrical resistivity at 600 °C was increased by more than one-order of magnitude from 3.7 × 104 Ω cm in pristine CaBi2Nb2O9 to 1.4 × 106 Ω cm in Ca0.8(Na0.5La0.3Bi0.2)0.2Bi2Nb2O9 ceramics. Such significant improvement in electrical resistivity results from the reduction in oxygen vacancies due to ternary doping of Na+, Bi3+ and La3+ and stronger binding interaction between La3+ dopants and O2− in (Bi2O2)2+ layers in Ca0.8(Na0.5La0.3Bi0.2)0.2Bi2Nb2O9 ceramics. This work demonstrates an important way of employing chemical doping to improve piezoelectric constant and electrical resistivity simultaneously at high-temperatures to tune structural distortion in bismuth-layered structural CaBi2Nb2O9 ceramics.
KW - Calcium bismuth niobate ceramics
KW - Electrical resistivity
KW - Piezoelectric constant
KW - Structural distortion
UR - http://www.scopus.com/inward/record.url?scp=85144309085&partnerID=8YFLogxK
U2 - 10.1016/j.ceramint.2022.11.266
DO - 10.1016/j.ceramint.2022.11.266
M3 - Article
AN - SCOPUS:85144309085
SN - 0272-8842
VL - 49
SP - 10738
EP - 10747
JO - Ceramics International
JF - Ceramics International
IS - 7
ER -