Terahertz channels in atmospheric conditions: Propagation characteristics and security performance

Jianjun Ma*, Yuheng Song, Mingxia Zhang, Guohao Liu, Weiming Li, John F. Federici, Daniel M. Mittleman

*此作品的通讯作者

科研成果: 期刊稿件文献综述同行评审

摘要

With the growing demand for higher wireless data rates, the interest in extending the carrier frequency of wireless links to the terahertz (THz) range has significantly increased. For long-distance outdoor wireless communications, THz channels may suffer substantial power loss and security issues due to atmospheric weather effects. It is crucial to assess the impact of weather on high-capacity data transmission to evaluate wireless system link budgets and performance accurately. In this article, we provide an insight into the propagation characteristics of THz channels under atmospheric conditions and the security aspects of THz communication systems in future applications. We conduct a comprehensive survey of our recent research and experimental findings on THz channel transmission and physical layer security, synthesizing and categorizing the state-of-the-art research in this domain. Our analysis encompasses various atmospheric phenomena, including molecular absorption, scattering effects, and turbulence, elucidating their intricate interactions with THz waves and the resultant implications for channel modeling and system design. Furthermore, we investigate the unique security challenges posed by THz communications, examining potential vulnerabilities and proposing novel countermeasures to enhance the resilience of these high-frequency systems against eavesdropping and other security threats. Finally, we discuss the challenges and limitations of such high-frequency wireless communications and provide insights into future research prospects for realizing the 6G vision, emphasizing the need for innovative solutions to overcome the atmospheric hurdles and security concerns in THz communications.

源语言英语
期刊Fundamental Research
DOI
出版状态已接受/待刊 - 2024

指纹

探究 'Terahertz channels in atmospheric conditions: Propagation characteristics and security performance' 的科研主题。它们共同构成独一无二的指纹。

引用此