摘要
Many applications of ferroic materials take advantage of the microstructural redistribution under an external stimulus. Despite extensive studies on the microstructural evolution during both domain switching and phase transformations of high-performance ferroelectrics near morphotropic phase boundaries (MPBs), the synergetic interactions between both leading factors remain unclear. Herein, we have illustrated and discerned the correlative response of phase transformation and domain switching in an archetypical piezoceramic of PbTiO3-BiScO3 using a combination of in situ high-energy synchrotron x-ray diffraction and phase-field simulations. The direct structural evidence and domain development from simulations reveal a significant reversible orientation-dependent emerging phase transformation and enhanced domain switching. Increasingly populated polarization variants aligned with the applied electric field owing to this strong synergistic interaction play an important role in enhancing the piezoelectric performances of MPB ferroelectrics. In addition to providing further insight into the microstructures of ferroelectrics, the present results have the potential to guide the design of high-performance materials.
源语言 | 英语 |
---|---|
文章编号 | 111403 |
期刊 | Physical Review Materials |
卷 | 2 |
期 | 11 |
DOI | |
出版状态 | 已出版 - 15 11月 2018 |