摘要
Let n ∈ N and Bn(r, q) be the generic Birman-Murakami-Wenzl algebra with respect to indeterminants r and q. It is known that B n(r, q) has two distinct linear representations generated by two central elements of Bn(r, q) called the symmetrizer and antisymmetrizer of Bn(r, q). These generate for n ≥ 3 the only one-dimensional two sided ideals of Bn(r, q) and generalize the corresponding notion for Hecke algebras of type A. The main result, Theorem 3.1, in this paper explicitly determines the coefficients of these elements with respect to the graphical basis of Bn(r, q).
源语言 | 英语 |
---|---|
文章编号 | 1350032 |
期刊 | Journal of Algebra and its Applications |
卷 | 12 |
期 | 7 |
DOI | |
出版状态 | 已出版 - 11月 2013 |
指纹
探究 'Symmetrizers and antisymmetrizers for the BMW-algebra' 的科研主题。它们共同构成独一无二的指纹。引用此
Dipper, R., Hu, J., & Stoll, F. (2013). Symmetrizers and antisymmetrizers for the BMW-algebra. Journal of Algebra and its Applications, 12(7), 文章 1350032. https://doi.org/10.1142/S0219498813500321