Study on a Closed-Loop Coupling Model without Coupling Spring

Yongchang Du*, Yingping Lv, Yujian Wang, Pu Gao

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 2
see details

摘要

Closed-loop coupling model, based on complex eigenvalue analysis, is one of the most popular and effective methods for brake squeal analysis. In the model, imaginary coupling springs are used to represent the normal contacting force between coupled nodes. Unfortunately, the physical meaning of these coupling springs was seldom discussed and there’s no systematic method to determine the value of spring stiffness. Realizing this problem, this paper, based on finite element model and modal synthesis technique, develops a new closed-loop coupling disc brake squeal model without introducing imaginary coupling springs. Different from the traditional model where two nodes at coupling interface are connected through a spring, these node-pairs in the new model are assumed to remain in tight contact during vibration. Details of the model, including force analysis, coordinate reduction and transformation and complex eigenvalue decomposition are given in this paper. Finally, the presented method is applied on the modelling of a squealing disc brake, which shows good correlation between model prediction results and those from bench test. Besides, because there are less indeterminate model parameters, the time for parameters tuning process is greatly reduced.

源语言英语
页(从-至)227-233
页数7
期刊SAE International Journal of Passenger Cars - Mechanical Systems
9
1
DOI
出版状态已出版 - 5 4月 2016

指纹

探究 'Study on a Closed-Loop Coupling Model without Coupling Spring' 的科研主题。它们共同构成独一无二的指纹。

引用此

Du, Y., Lv, Y., Wang, Y., & Gao, P. (2016). Study on a Closed-Loop Coupling Model without Coupling Spring. SAE International Journal of Passenger Cars - Mechanical Systems, 9(1), 227-233. https://doi.org/10.4271/2016-01-1315