TY - JOUR
T1 - Strain-regulated Gibbs free energy enables reversible redox chemistry of chalcogenides for sodium ion batteries
AU - Jiang, Minxia
AU - Hu, Yingjie
AU - Mao, Baoguang
AU - Wang, Yixin
AU - Yang, Zhen
AU - Meng, Tao
AU - Wang, Xin
AU - Cao, Minhua
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Manipulating the reversible redox chemistry of transition metal dichalcogenides for energy storage often faces great challenges as it is difficult to regulate the discharged products directly. Herein we report that tensile-strained MoSe2 (TS-MoSe2) can act as a host to transfer its strain to corresponding discharged product Mo, thus contributing to the regulation of Gibbs free energy change (ΔG) and enabling a reversible sodium storage mechanism. The inherited strain results in lattice distortion of Mo, which adjusts the d-band center upshifted closer to the Fermi level to enhance the adsorbability of Na2Se, thereby leading to a decreased ΔG of the redox chemistry between Mo/Na2Se and MoSe2. Ex situ and in situ experiments revealed that, unlike the unstrained MoSe2, TS-MoSe2 shows a highly reversible sodium storage, along with an evidently improved reaction kinetics. This work sheds light on the study on electrochemical energy storage mechanism of other electrode materials.
AB - Manipulating the reversible redox chemistry of transition metal dichalcogenides for energy storage often faces great challenges as it is difficult to regulate the discharged products directly. Herein we report that tensile-strained MoSe2 (TS-MoSe2) can act as a host to transfer its strain to corresponding discharged product Mo, thus contributing to the regulation of Gibbs free energy change (ΔG) and enabling a reversible sodium storage mechanism. The inherited strain results in lattice distortion of Mo, which adjusts the d-band center upshifted closer to the Fermi level to enhance the adsorbability of Na2Se, thereby leading to a decreased ΔG of the redox chemistry between Mo/Na2Se and MoSe2. Ex situ and in situ experiments revealed that, unlike the unstrained MoSe2, TS-MoSe2 shows a highly reversible sodium storage, along with an evidently improved reaction kinetics. This work sheds light on the study on electrochemical energy storage mechanism of other electrode materials.
UR - http://www.scopus.com/inward/record.url?scp=85138460721&partnerID=8YFLogxK
U2 - 10.1038/s41467-022-33329-2
DO - 10.1038/s41467-022-33329-2
M3 - Article
C2 - 36151139
AN - SCOPUS:85138460721
SN - 2041-1723
VL - 13
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 5588
ER -