Stereo Generation from a Single Image Using Deep Residual Network

Jun Huang, Tianteng Bi, Yue Liu, Yongtian Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

In this paper, we propose a framework to generate stereoscopic content from a single image using the relative depth label predicted from deep residual network. Specifically, our framework first obtains a coarse relative depth label from the network and refines it to painting depth by sampling and interpolation, then an unsupervised clustering algorithm is employed to separate pixels of different depths into different layers to generate stereoscopic images. Experimental results with good visual effects demonstrate that the proposed method can be generally applied in both outdoor and indoor scenes. Meanwhile the quantitative results on relative depth estimation from a single image are comparable to state-of-the-art. Further experiments show the application possibility of our method in VR and panorama.

源语言英语
主期刊名2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings
出版商IEEE Computer Society
3653-3657
页数5
ISBN(电子版)9781479970612
DOI
出版状态已出版 - 29 8月 2018
活动25th IEEE International Conference on Image Processing, ICIP 2018 - Athens, 希腊
期限: 7 10月 201810 10月 2018

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

会议

会议25th IEEE International Conference on Image Processing, ICIP 2018
国家/地区希腊
Athens
时期7/10/1810/10/18

指纹

探究 'Stereo Generation from a Single Image Using Deep Residual Network' 的科研主题。它们共同构成独一无二的指纹。

引用此