Stenosis-DetNet: Sequence consistency-based stenosis detection for X-ray coronary angiography

Kun Pang, Danni Ai*, Huihui Fang, Jingfan Fan, Hong Song, Jian Yang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

30 引用 (Scopus)

摘要

Background: The automatic detection of coronary artery stenosis on X-ray images is important in coronary heart disease diagnosis. Conventional methods cannot accurately detect all stenosis areas because of heartbeat, respiratory movements and weak vascular features in single-frame contrast images. Method: This paper proposes the use of Stenosis-DetNet, which is a method based on object detection networks. A sequence feature fusion module and a sequence consistency alignment module are designed to maximize temporal information to achieve accurate detection results. The sequence feature fusion module fuses all candidate box features and uses the temporal information to enhance these features. The sequence consistency alignment module optimizes the initial results by using the coronary artery displacement information and image features of the adjacent images and leads to the final detection of coronary artery stenosis. Results: In the experiment, 166 X-ray image sequences were used for training and testing. Compared with the three existing stenosis detection methods, the precision and sensitivity of Stensis-DetNet were 94.87 % and 82.22 %, respectively, which were better than those of the other three methods. Conclusion: Our proposed method effectively suppressed the false positive and false negative results of stenosis detection in sequence angiography images. It was superior to the state-of-art methods.

源语言英语
文章编号101900
期刊Computerized Medical Imaging and Graphics
89
DOI
出版状态已出版 - 4月 2021

指纹

探究 'Stenosis-DetNet: Sequence consistency-based stenosis detection for X-ray coronary angiography' 的科研主题。它们共同构成独一无二的指纹。

引用此