Spatiotemporal reflectance fusion based on location regularized sparse representation

Xun Liu, Chenwei Deng, Baojun Zhao

科研成果: 书/报告/会议事项章节会议稿件同行评审

13 引用 (Scopus)

摘要

Spatiotemporal reflectance fusion plays an important role in providing earth observation with both high-spatial and high-temporal resolutions, and sparse representation is one of the popular strategies to implement spatiotemporal fusion. However, the existing methods generally suffers from instability of sparse representation for the fine and coarse image pairs. In this paper, we demonstrate that such instability can be addressed by exploiting spatial correlations among the neighboring fine images, which is mathematically formulated as a location regularized term. A fast iterative shrinkage-thresholding algorithm (FISTA) is then employed to find the optimal solution. Experimental results show that the performance of proposed method outperforms other relevant state-of-the-art fusion approaches.

源语言英语
主期刊名2016 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
2562-2565
页数4
ISBN(电子版)9781509033324
DOI
出版状态已出版 - 1 11月 2016
活动36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Beijing, 中国
期限: 10 7月 201615 7月 2016

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2016-November

会议

会议36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016
国家/地区中国
Beijing
时期10/07/1615/07/16

指纹

探究 'Spatiotemporal reflectance fusion based on location regularized sparse representation' 的科研主题。它们共同构成独一无二的指纹。

引用此