跳到主要导航
跳到搜索
跳到主要内容
北京理工大学 首页
English
中文
首页
师资队伍
研究单位
科研成果
奖项
按专业知识、名称或附属进行搜索
Sparse learning model with embedded RIP conditions for turbulence super-resolution reconstruction
Qinyi Huang,
Wei Zhu
*
,
Feng Ma
, Qiang Liu, Jun Wen, Lei Chen
*
此作品的通讯作者
机电学院
Beijing Institute of Technology
科研成果
:
期刊稿件
›
文章
›
同行评审
综述
指纹
指纹
探究 'Sparse learning model with embedded RIP conditions for turbulence super-resolution reconstruction' 的科研主题。它们共同构成独一无二的指纹。
分类
加权
按字母排序
Computer Science
super resolution
100%
Autoencoder
100%
Transform Domain
50%
Sampling Ratio
50%
Reynolds Number
50%
Measurement Data
25%
Reconstruction Result
25%
Relative Error
25%
Reconstruction Accuracy
25%
Domain Information
25%
Sensor Placement
25%
Engineering
Restricted Isometry Property
100%
Autoencoder
57%
Flow Field
42%
Reynolds' Number
28%
Limitations
14%
Relative Error
14%
Engineering
14%
Multiscale
14%
Irregular Structure
14%
Measurement Data
14%
Fine Detail
14%
Domain Information
14%