SimpleTrack: Rethinking and Improving the JDE Approach for Multi-Object Tracking

Jiaxin Li, Yan Ding*, Hua Liang Wei, Yutong Zhang, Wenxiang Lin

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

37 引用 (Scopus)

摘要

Joint detection and embedding (JDE) methods usually fuse the target motion information and appearance information as the data association matrix, which could fail when the target is briefly lost or blocked in multi-object tracking (MOT). In this paper, we aim to solve this problem by proposing a novel association matrix, the Embedding and GioU (EG) matrix, which combines the embedding cosine distance and GioU distance of objects. To improve the performance of data association, we develop a simple, effective, bottom-up fusion tracker for re-identity features, named SimpleTrack, and propose a new tracking strategy which can mitigate the loss of detection targets. To show the effectiveness of the proposed method, experiments are carried out using five different state-of-the-art JDE-based methods. The results show that by simply replacing the original association matrix with our EG matrix, we can achieve significant improvements in IDF1, HOTA and IDsw metrics, and increase the tracking speed of these methods by around 20%. In addition, our SimpleTrack has the best data association capability among the JDE-based methods, e.g., 61.6 HOTA and 76.3 IDF1, on the test set of MOT17 with 23 FPS running speed on a single GTX2080Ti GPU.

源语言英语
文章编号5863
期刊Sensors
22
15
DOI
出版状态已出版 - 8月 2022

指纹

探究 'SimpleTrack: Rethinking and Improving the JDE Approach for Multi-Object Tracking' 的科研主题。它们共同构成独一无二的指纹。

引用此