Segmenting ct prostate images using population and patient-Specific statistics for radiotherapy

Qianjin Fenga*, Mark Foskey, Songyuan Tang, Wufan Chen, Dinggang Shen

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

11 引用 (Scopus)

摘要

This paper presents a new deformable model using both population and patient-specific statistics to segment the prostate from CT images. There are two novelties in the proposed method. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than general intensity and gradient features, is used to characterize the image features. Second, an online training approach is used to build the shape statistics for accurately capturing intra-patient variation, which is more important than inter-patient variation for prostate segmentation in clinical radiotherapy. Experimental results show that the proposed method is robust and accurate, suitable for clinical application.

源语言英语
主期刊名Proceedings - 2009 IEEE International Symposium on Biomedical Imaging
主期刊副标题From Nano to Macro, ISBI 2009
282-285
页数4
DOI
出版状态已出版 - 2009
已对外发布
活动2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009 - Boston, MA, 美国
期限: 28 6月 20091 7月 2009

出版系列

姓名Proceedings - 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009

会议

会议2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009
国家/地区美国
Boston, MA
时期28/06/091/07/09

指纹

探究 'Segmenting ct prostate images using population and patient-Specific statistics for radiotherapy' 的科研主题。它们共同构成独一无二的指纹。

引用此