TY - GEN
T1 - Secret key generation based on 3D spatial angles for UAV communications
AU - Lin, Kun
AU - Ji, Zijie
AU - Zhang, Yan
AU - Chen, Gaojie
AU - Yeoh, Phee Lep
AU - He, Zunwen
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - Unmanned aerial vehicle (UAV) will be an essential carrier for future wireless communications due to its flexible deployment and low cost. As such, the information security of UAV communications is of paramount concern. In this paper, a novel physical layer secret key generation scheme is proposed for air-to-ground (A2G) UAV multiple-input-multiple-output (MIMO) communications, which is applicable in frequency division duplex (FDD) systems. In UAV communications, line-of-sight (LoS) propagation is a distinctive feature, which significantly weakens the performance of channel state information (CSI) based keys. Therefore, a novel channel parameter, three-dimension (3D) spatial angle, is employed to combat against a novel active eavesdropping method, which is termed as Environment Reconstruction based Attack for SEcret keys (ERASE). Compared to the existing plane-angle-based method, our scheme can efficiently utilize spatial resources and provide a higher key generation rate (KGR). The advantages of the proposed scheme are shown through both theoretical analysis and simulations.
AB - Unmanned aerial vehicle (UAV) will be an essential carrier for future wireless communications due to its flexible deployment and low cost. As such, the information security of UAV communications is of paramount concern. In this paper, a novel physical layer secret key generation scheme is proposed for air-to-ground (A2G) UAV multiple-input-multiple-output (MIMO) communications, which is applicable in frequency division duplex (FDD) systems. In UAV communications, line-of-sight (LoS) propagation is a distinctive feature, which significantly weakens the performance of channel state information (CSI) based keys. Therefore, a novel channel parameter, three-dimension (3D) spatial angle, is employed to combat against a novel active eavesdropping method, which is termed as Environment Reconstruction based Attack for SEcret keys (ERASE). Compared to the existing plane-angle-based method, our scheme can efficiently utilize spatial resources and provide a higher key generation rate (KGR). The advantages of the proposed scheme are shown through both theoretical analysis and simulations.
KW - Active eavesdropping
KW - Secret key generation
KW - UAV communications
UR - http://www.scopus.com/inward/record.url?scp=85119361349&partnerID=8YFLogxK
U2 - 10.1109/WCNC49053.2021.9417510
DO - 10.1109/WCNC49053.2021.9417510
M3 - Conference contribution
AN - SCOPUS:85119361349
T3 - IEEE Wireless Communications and Networking Conference, WCNC
BT - 2021 IEEE Wireless Communications and Networking Conference, WCNC 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE Wireless Communications and Networking Conference, WCNC 2021
Y2 - 29 March 2021 through 1 April 2021
ER -