Scanning tunneling spectroscopy investigations of superconducting-doped topological insulators: Experimental pitfalls and results

Stefan Wilfert*, Paolo Sessi, Zhiwei Wang, Henrik Schmidt, M. Carmen Martínez-Velarte, Seng Huat Lee, Yew San Hor, Alexander F. Otte, Yoichi Ando, Weida Wu, Matthias Bode

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

Recently, the doping of topological insulators has attracted significant interest as a potential route towards topological superconductivity. Because many experimental techniques lack sufficient surface sensitivity, however, definite proof of the coexistence of topological surface states and surface superconductivity is still outstanding. Here we report on highly surface sensitive scanning tunneling microscopy and spectroscopy experiments performed on Tl-doped Bi2Te3, a three-dimensional topological insulator which becomes superconducting in the bulk at TC=2.3 K. Landau level spectroscopy as well as quasiparticle interference mapping clearly demonstrated the presence of a topological surface state with a Dirac point energy ED=-(118±1) meV and a Dirac velocity vD=(4.7±0.1)×105 m/s. Tunneling spectra often show a superconducting gap, but temperature- and field-dependent measurements show that both TC and μ0HC strongly deviate from the corresponding bulk values. Furthermore, in spite of a critical field value which clearly points to type-II superconductivity, no Abrikosov lattice could be observed. Experiments performed on normal-metallic Ag(111) prove that the gapped spectrum is caused only by superconducting tips, probably caused by a gentle crash with the sample surface during approach. Nearly identical results were found for the intrinsically n-type compound Nb-doped Bi2Se3. Our results suggest that the superconductivity in superconducting-doped V-VI topological insulators does not extend to the surface where the topological surface state is located.

源语言英语
文章编号085133
期刊Physical Review B
98
8
DOI
出版状态已出版 - 20 8月 2018
已对外发布

指纹

探究 'Scanning tunneling spectroscopy investigations of superconducting-doped topological insulators: Experimental pitfalls and results' 的科研主题。它们共同构成独一无二的指纹。

引用此