Safe Positioning Based on CNN and LSTM for 5G Wireless Networks

Lu Chen, Guan Mingxiang, Zhou Jianming, Wu Naixing, Gan Yuxi, Tang Hui*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

This paper presents a robust 5G wireless networks visual safety positioning model, which combines CNN (Convolutional Neural Network) and LSTM(Long Short-Term Memory) networks and can solve the sequence problem. Two parallel full connection layers are added to the output layer of the network to regress the RGB images to obtain the 3D position and 3D direction of the 5G wireless networks. Because the data set of each scene is small, the method of transfer learning is used in the training. The model has the best positioning result in the chess scene on the 7senses dataset, with the positioning error of 0.21m and 7.52°, and the positioning error in the seven scenes is 0.31m and 10.35°. This method can achieve good positioning effect in indoor positioning.

源语言英语
主期刊名International Conference on Network Communication and Information Security, ICNCIS 2022
编辑Mohiuddin Ahmed
出版商SPIE
ISBN(电子版)9781510661134
DOI
出版状态已出版 - 2022
已对外发布
活动2022 International Conference on Network Communication and Information Security, ICNCIS 2022 - Qingdao, 中国
期限: 19 8月 202221 8月 2022

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
12503
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议2022 International Conference on Network Communication and Information Security, ICNCIS 2022
国家/地区中国
Qingdao
时期19/08/2221/08/22

指纹

探究 'Safe Positioning Based on CNN and LSTM for 5G Wireless Networks' 的科研主题。它们共同构成独一无二的指纹。

引用此