Roundabout Mechanism of Ion-Molecule Nucleophilic Substitution Reactions

Xiangyu Wu, Fei Ying, Hongyi Wang, Li Yang, Jiaxu Zhang, Jing Xie*

*此作品的通讯作者

科研成果: 期刊稿件文献综述同行评审

1 引用 (Scopus)

摘要

Roundabout (RA) is an important indirect mechanism for gas-phase X- + CH3Y → XCH3 + Y- SN2 reactions at a high collision energy. It refers to the rotation of the CH3-group by half or multiple circles upon the collision of incoming nucleophiles before substitution takes place. The RA mechanism was first discovered in the Cl- + CH3I SN2 reaction to explain the energy transfer observed in crossed molecular beam imaging experiments in 2008. Since then, the RA mechanism and its variants have been observed not only in multiple C-centered SN2 reactions, but also in N-centered SN2 reactions, proton transfer reactions, and elimination reactions. This work reviewed recent studies on the RA mechanism and summarized the characteristics of RA mechanisms in terms of variant types, product energy partitioning, and product velocity scattering angle distribution. RA mechanisms usually happen at small impact parameters and tend to couple with other mechanisms at relatively low collision energy, and the available energy of roundabout trajectories is primarily partitioned to internal energy. Factors that affect the importance of the RA mechanism were analyzed, including the type of leaving group and nucleophile, collision energy, and microsolvation. A massive leaving group and relatively high collision energy are prerequisite for the occurrence of the roundabout mechanism. Interestingly, when reacting with CH3I, the importance of RA mechanisms follows an order of Cl- > HO- > F-, and such a nucleophile dependence was attributed to the difference in proton affinity and size of the nucleophile.

源语言英语
期刊ACS Physical Chemistry Au
DOI
出版状态已接受/待刊 - 2024

指纹

探究 'Roundabout Mechanism of Ion-Molecule Nucleophilic Substitution Reactions' 的科研主题。它们共同构成独一无二的指纹。

引用此