Room temperature sintering of Cu-Ag core-shell nanoparticles conductive inks for printed electronics

Xiaofeng Dai, Wen Xu, Teng Zhang, Hongbin Shi, Tao Wang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

73 引用 (Scopus)

摘要

The monodisperse Cu-Ag core-shell nanoparticles (Cu@Ag NPs) for electric conductive inks were successfully prepared by a simple two-step process consisting of thermal decomposition and galvanic displacement. It was found that 20 mol.% coverage of Ag enabled Cu@Ag NPs oxidation resisting with air. A new approach to achieve coalescence and sintering of Cu@Ag NPs at room temperature was proposed. 1-amino-2-propanol (MIPA), hydrophilic amine with a short C-chain, was first applied to replace the strong stabilizer, the strong stabilizer oleylamine (OAM) adsorbed on particles, thereby obtained preliminary agglomeration and hydrophobic -to- hydrophilic transition to improve the wetting capability of electrolyte solution on the surface of metal film. Then, the reducing electrolyte NaBH4 solution was used as the destabilizing agent to deeply coalesce particles, and also inhibit the electrochemical corrosion. It takes only a few minutes to achieve sintering in air at room temperature. Due to the effective sintering at room temperature, the conductive patterns could be formed on thermo-sensitive substrates. The eventual resistivity was found to be as low as 36.3 μΩ·cm.

源语言英语
页(从-至)310-319
页数10
期刊Chemical Engineering Journal
364
DOI
出版状态已出版 - 15 5月 2019
已对外发布

指纹

探究 'Room temperature sintering of Cu-Ag core-shell nanoparticles conductive inks for printed electronics' 的科研主题。它们共同构成独一无二的指纹。

引用此