Robust Fe3Mo3C Supported IrMn Clusters as Highly Efficient Bifunctional Air Electrode for Metal–Air Battery

Zhiming Cui, Yutao Li, Gengtao Fu, Xiang Li, John B. Goodenough*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

98 引用 (Scopus)

摘要

Catalysts at the air cathode for oxygen reduction and evolution reactions are central to the stability of rechargeable metal–air batteries, an issue that is gaining increasing interest in recent years. Herein, a highly durable and efficient carbide-based bifunctional catalyst consisting of iron–molybdenum carbide (Fe3Mo3C) and IrMn nanoalloys is demonstratred. This carbide is chemically stable in alkaline media and over the potential range of an air cathode. More importantly, Fe3Mo3C is very active for oxygen reduction reaction (ORR) in alkaline media. Fe3Mo3C supported IrMn as a bifunictional catalysts exhibits superior catalytic performance than the state of the art ORR catalyst (Pt/C) and the oxygen evolution reaction catalyst (Ir/C). IrMn/Fe3Mo3C enables Zn–air batteries to achieve long-term cycling performance over 200 h with high efficiency. The extraordinarily high performance of IrMn/Fe3Mo3C bifunictional catalyst provides a very promising alternative to the conventional Pt/C and Ir/C catalyst for an air cathode in alkaline electrolyte.

源语言英语
文章编号1702385
期刊Advanced Materials
29
40
DOI
出版状态已出版 - 25 10月 2017
已对外发布

指纹

探究 'Robust Fe3Mo3C Supported IrMn Clusters as Highly Efficient Bifunctional Air Electrode for Metal–Air Battery' 的科研主题。它们共同构成独一无二的指纹。

引用此