Research on FSAC trajectory tracking control based on optimized BP neural network algorithm

Zhiqiang Zhang, Gang Li, Zhixin Chen, Xing Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

A longitudinal linear quadratic regulation LQR acceleration motion controller and a lateral linear model prediction (LTV-MPC) motion controller are designed to address the accuracy and stability of trajectory tracking with a four-wheel independent drive driverless formula car. Based on the BP neural network algorithm, the prediction step and control step parameters of the model prediction control are adaptively adjusted, and the genetic optimisation algorithm is used to optimise the BP neural network to improve the lateral trajectory tracking accuracy of the car. The simulation results show that the proposed lateral motion control strategy can control the unmanned racing car to track the lateral trajectory well during the trajectory tracking process.

源语言英语
主期刊名Proceedings of the 2023 7th CAA International Conference on Vehicular Control and Intelligence, CVCI 2023
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9798350340488
DOI
出版状态已出版 - 2023
已对外发布
活动7th CAA International Conference on Vehicular Control and Intelligence, CVCI 2023 - Changsha, 中国
期限: 27 10月 202329 10月 2023

出版系列

姓名Proceedings of the 2023 7th CAA International Conference on Vehicular Control and Intelligence, CVCI 2023

会议

会议7th CAA International Conference on Vehicular Control and Intelligence, CVCI 2023
国家/地区中国
Changsha
时期27/10/2329/10/23

指纹

探究 'Research on FSAC trajectory tracking control based on optimized BP neural network algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此