摘要
Empirical mode decomposition (EMD) is a recently proposed nonlinear and nonstationary laser signal denoising method. A noisy signal is broken down using EMD into oscillatory components that are called intrinsic mode functions (IMFs). Thresholding-based denoising and correlation-based partial reconstruction of IMFs are the two main research directions for EMD-based denoising. Similar to other decomposition-based denoising approaches, EMD-based denoising methods require a reliable threshold to determine which IMFs are noise components and which IMFs are noise-free components. In this work, we propose a new approach in which each IMF is first denoised using EMD interval thresholding (EMD-IT), and then a robust thresholding process based on Spearman correlation coefficient is used for relevant modes selection. The proposed method tackles the problem using a thresholding-based denoising approach coupled with partial reconstruction of the relevant IMFs. Other traditional denoising methods, including correlation-based EMD partial reconstruction (EMD-Correlation), discrete Fourier transform and wavelet-based methods, are investigated to provide a comparison with the proposed technique. Simulation and test results demonstrate the superior performance of the proposed method when compared with the other methods.
源语言 | 英语 |
---|---|
页(从-至) | 936-949 |
页数 | 14 |
期刊 | Optical Review |
卷 | 23 |
期 | 6 |
DOI | |
出版状态 | 已出版 - 1 12月 2016 |