Quality matters: Assessing CQA pair quality via transductive multi-view learning

Xiaochi Wei, Heyan Huang*, Liqiang Nie, Fuli Feng, Richang Hong, Tat Seng Chua

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

Community-based question answering (cQA) sites have become important knowledge sharing platforms, as massive cQA pairs are archived, but the uneven quality of cQA pairs leaves information seekers unsatisfied. Various efforts have been dedicated to predicting the quality of cQA contents. Most of them concatenate different features into single vectors and then feed them into regression models. In fact, the quality of cQA pairs is influenced by different views, and the agreement among them is essential for quality assessment. Besides, the lacking of labeled data significantly hinders the quality prediction performance. Toward this end, we present a transductive multi-view learning model. It is designed to find a latent common space by unifying and preserving information from various views, including question, answer, QA relevance, asker, and answerer. Additionally, rich information in the unlabeled test cQA pairs are utilized via transductive learning to enhance the representation ability of the common space. Extensive experiments on real-world datasets have well-validated the proposed model.

源语言英语
主期刊名Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
编辑Jerome Lang
出版商International Joint Conferences on Artificial Intelligence
4482-4488
页数7
ISBN(电子版)9780999241127
DOI
出版状态已出版 - 2018
活动27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, 瑞典
期限: 13 7月 201819 7月 2018

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
2018-July
ISSN(印刷版)1045-0823

会议

会议27th International Joint Conference on Artificial Intelligence, IJCAI 2018
国家/地区瑞典
Stockholm
时期13/07/1819/07/18

指纹

探究 'Quality matters: Assessing CQA pair quality via transductive multi-view learning' 的科研主题。它们共同构成独一无二的指纹。

引用此