QOS-Aware Flow Control for Power-Efficient Data Center Networks with Deep Reinforcement Learning

Penghao Sun, Zehua Guo, Sen Liu, Julong Lan, Yuxiang Hu

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)

摘要

Reducing the power consumption and maintaining the Flow Completion Time (FCT) for the Quality of Service (QoS) of applications in Data Center Networks (DCNs) are two major concerns for data center operators. However, existing works either fail in guaranteeing the QoS due to the neglect of the FCT constraints or achieve a less satisfying power efficiency. In this paper, we propose SmartFCT, which employs Software-Defined Networking (SDN) coupled with the Deep Reinforcement Learning (DRL) to improve the power efficiency of DCNs and guarantee the FCT. The DRL agent can generate a dynamic policy to consolidate traffic flows into fewer active switches in the DCN for power efficiency, and the policy also leaves different margins in different active links and switches to avoid FCT violation of unexpected short bursts of flows. Simulation results show that with similar FCT guarantee, SmartFCT can save 8% more of the power consumption compared to the state-of-the-art solutions.

源语言英语
主期刊名2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
3552-3556
页数5
ISBN(电子版)9781509066315
DOI
出版状态已出版 - 5月 2020
活动2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, 西班牙
期限: 4 5月 20208 5月 2020

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2020-May
ISSN(印刷版)1520-6149

会议

会议2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
国家/地区西班牙
Barcelona
时期4/05/208/05/20

指纹

探究 'QOS-Aware Flow Control for Power-Efficient Data Center Networks with Deep Reinforcement Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此