Probabilistic Fusion Framework for Collaborative Robots 3D Mapping

Yufeng Yue, P. G.C.N. Senarathne, Chule Yang, Jun Zhang, Mingxing Wen, Danwei Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

9 引用 (Scopus)

摘要

Fusion of local 3D maps generated by individual robots to a globally consistent 3D map is one of the fundamental challenges in multi-robot mapping missions. In this paper, we propose a probabilistic mathematical formulation to address the integrated map fusion problem. More specifically, the problem of estimating fused map posterior can be factorized into a product of relative transformation posterior and the global map posterior, which enables us to solve map matching and map merging problems efficiently. In addition, a distributed communication strategy is employed to share map information among robots. The proposed approach is evaluated in indoor and mixed environments, which shows its utility in 3D map fusion for multi-robot mapping missions.

源语言英语
主期刊名2018 21st International Conference on Information Fusion, FUSION 2018
出版商Institute of Electrical and Electronics Engineers Inc.
488-491
页数4
ISBN(印刷版)9780996452762
DOI
出版状态已出版 - 5 9月 2018
已对外发布
活动21st International Conference on Information Fusion, FUSION 2018 - Cambridge, 英国
期限: 10 7月 201813 7月 2018

出版系列

姓名2018 21st International Conference on Information Fusion, FUSION 2018

会议

会议21st International Conference on Information Fusion, FUSION 2018
国家/地区英国
Cambridge
时期10/07/1813/07/18

指纹

探究 'Probabilistic Fusion Framework for Collaborative Robots 3D Mapping' 的科研主题。它们共同构成独一无二的指纹。

引用此