Probabilistic fiber tracking using a modified Lasso bootstrap method

Chuyang Ye, Jeffrey Glaister, Jerry L. Prince

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Diffusion MRI (dMRI) provides a noninvasive tool for investigating white matter tracts. Probabilistic fiber tracking has been proposed to represent the fiber structures as 3D streamlines while taking the uncertainty introduced by noise into account. In this paper, we propose a probabilistic fiber tracking method based on bootstrapping a multi-tensor model with a fixed tensor basis. The fiber orientation (FO) estimation is formulated as a Lasso problem. Then by resampling the residuals calculated using a modified Lasso estimator to create synthetic diffusion signals, a distribution of FOs is estimated. Probabilistic fiber tracking can then be performed by sampling from the FO distribution. Experiments were performed on a digital crossing phantom and brain dMRI for validation.

源语言英语
主期刊名2015 IEEE 12th International Symposium on Biomedical Imaging, ISBI 2015
出版商IEEE Computer Society
943-946
页数4
ISBN(电子版)9781479923748
DOI
出版状态已出版 - 21 7月 2015
已对外发布
活动12th IEEE International Symposium on Biomedical Imaging, ISBI 2015 - Brooklyn, 美国
期限: 16 4月 201519 4月 2015

出版系列

姓名Proceedings - International Symposium on Biomedical Imaging
2015-July
ISSN(印刷版)1945-7928
ISSN(电子版)1945-8452

会议

会议12th IEEE International Symposium on Biomedical Imaging, ISBI 2015
国家/地区美国
Brooklyn
时期16/04/1519/04/15

指纹

探究 'Probabilistic fiber tracking using a modified Lasso bootstrap method' 的科研主题。它们共同构成独一无二的指纹。

引用此