Privacy-preserving Training Algorithm for Naive Bayes Classifiers

Rui Wang, Xiangyun Tang, Meng Shen*, Liehuang Zhu

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The growing popularity of Machine learning (ML) that appreciates high quality training datasets collected from multiple organizations raises natural questions about the privacy guarantees that can be provided in such settings. Our work tackles this problem in the context of multi-party secure ML wherein multiple organizations provide their sensitive datasets to a data user and train a Naive Bayes (NB) model with the data user. We propose PPNB, a privacy-preserving scheme for training NB models, based on Homomorphic Cryptosystem (HC) and Differential Privacy (DP). PPNB achieves a balance performance between efficiency and accuracy in multi-party secure ML, enabled flexible switch among different tradeoffs by parameter tuning. Extensive experimental results validate the effectiveness of PPNB.

源语言英语
主期刊名ICC 2022 - IEEE International Conference on Communications
出版商Institute of Electrical and Electronics Engineers Inc.
5639-5644
页数6
ISBN(电子版)9781538683477
DOI
出版状态已出版 - 2022
活动2022 IEEE International Conference on Communications, ICC 2022 - Seoul, 韩国
期限: 16 5月 202220 5月 2022

出版系列

姓名IEEE International Conference on Communications
2022-May
ISSN(印刷版)1550-3607

会议

会议2022 IEEE International Conference on Communications, ICC 2022
国家/地区韩国
Seoul
时期16/05/2220/05/22

指纹

探究 'Privacy-preserving Training Algorithm for Naive Bayes Classifiers' 的科研主题。它们共同构成独一无二的指纹。

引用此