摘要
The structural patterns of periodic cellular materials play an important role in their properties. Here, we investigate how these patterns transform dramatically under external stimuli in simple periodic cellular structures that include a nanotube bundle and a millimeter-size plastic straw bundle. Under gradual hydrostatic straining up to 20%, the cross-section of the single walled carbon nanotube bundle undergoes several pattern transformations, while an amazing new hexagram pattern is triggered from the circular shape when the strain of 20% is applied suddenly in one step. Similar to the nanotube bundle, the circular plastic straw bundle is transformed into a hexagonal pattern on heating by conduction through a baseplate but into a hexagram pattern when heated by convection. Besides the well-known elastic buckling, we find other mechanisms of pattern transformation at different scales; these include the minimization of the surface energy at the macroscale or of the van der Waals energy at the nanoscale and the competition between the elastic energy of deformation and either the surface energy at the macroscale or the van der Waals energy at the nanoscale. The studies of the pattern transformations of periodic porous materials offer new insights into the fabrication of novel materials and devices with tailored properties.
源语言 | 英语 |
---|---|
文章编号 | 084907 |
期刊 | Journal of Applied Physics |
卷 | 109 |
期 | 8 |
DOI | |
出版状态 | 已出版 - 15 4月 2011 |
已对外发布 | 是 |