Parameter Estimation of Unmanned Vehicle Based on ESO and EKF Algorithm

Shengchao Huang, Chengke Chao, Jiazhu Huang, Yuezu Lv*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In this paper, the problem of parameter estimation of nonlinear unmanned vehicle systems is studied. By introducing an extended state to model the unknown parameters, the parameter estimation is realized by designing the extended state observer (ESO), and the influence of noise is tackled through extended Kalman filter (EKF). The observability is analyzed, and simulation example shows the effectiveness of the proposed parameter estimation method.

源语言英语
主期刊名Proceedings of 2023 7th Chinese Conference on Swarm Intelligence and Cooperative Control - Swarm Perception and Navigation Technologies
编辑Jianglong Yu, Qingdong Li, Yumeng Liu
出版商Springer Science and Business Media Deutschland GmbH
469-476
页数8
ISBN(印刷版)9789819733316
DOI
出版状态已出版 - 2024
活动7th Chinese Conference on Swarm Intelligence and Cooperative Control, CCSICC 2023 - Nanjing, 中国
期限: 24 11月 202327 11月 2023

出版系列

姓名Lecture Notes in Electrical Engineering
1206 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议7th Chinese Conference on Swarm Intelligence and Cooperative Control, CCSICC 2023
国家/地区中国
Nanjing
时期24/11/2327/11/23

指纹

探究 'Parameter Estimation of Unmanned Vehicle Based on ESO and EKF Algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此