Parallel CNN-Transformer Dual-branch Hybrid Tracker

Chenxi Li, Yongqiang Bai

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Currently, object tracking methods are increasingly adopting Transformer-based models to replace the earlier convolutional neural networks (CNNs). While these methods have achieved performance improvements, they tend to overlook the importance of local feature details in visual tasks due to the global modeling nature of Transformers. In this paper, we propose a parallel CNN-Transformer dual-branch hybrid tracking model (PCTTrack). By designing a feature fusion module with various attention mechanisms and an improved prediction head, the model effectively leverages both local and global information advantages. Experiments show that our method achieves competitive results on multiple object tracking datasets. For instance, it achieves an AO of 75.5 on the GOT-10K dataset. Compared to the single Transformer branch, the hybrid model improves the AUC on LaSOT by 3.8% and the AO on GOT-10K by 2.6%. Additionally, through visualizing the outputs of different model structures, we validate the effectiveness of the dual-branch fusion model.

源语言英语
主期刊名Proceedings - 2024 China Automation Congress, CAC 2024
出版商Institute of Electrical and Electronics Engineers Inc.
3945-3950
页数6
ISBN(电子版)9798350368604
DOI
出版状态已出版 - 2024
活动2024 China Automation Congress, CAC 2024 - Qingdao, 中国
期限: 1 11月 20243 11月 2024

出版系列

姓名Proceedings - 2024 China Automation Congress, CAC 2024

会议

会议2024 China Automation Congress, CAC 2024
国家/地区中国
Qingdao
时期1/11/243/11/24

指纹

探究 'Parallel CNN-Transformer Dual-branch Hybrid Tracker' 的科研主题。它们共同构成独一无二的指纹。

引用此

Li, C., & Bai, Y. (2024). Parallel CNN-Transformer Dual-branch Hybrid Tracker. 在 Proceedings - 2024 China Automation Congress, CAC 2024 (页码 3945-3950). (Proceedings - 2024 China Automation Congress, CAC 2024). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CAC63892.2024.10865120