TY - JOUR
T1 - Optimal fuzzy control of a semi-active suspension of a full-vehicle model using MR dampers
AU - Wang, Hao
AU - Hu, Haiyan
PY - 2005/4/10
Y1 - 2005/4/10
N2 - MR (Magneto-Rheological) dampers have turned out to be a promising device for improving the ride comfort of ground vehicles. However, the current control algorithms for MR dampers, including on-off control and clipped-optimal control, are not sufficiently effective. This paper presents a fuzzy control strategy for an MR damper in order to determine the input voltage according to the desired restoring force. It then goes on using this new strategy to reduce the suspension vibration of a full-vehicle model equipped with 4 MR dampers, where the desired restoring forces are determined through the optimal control of suspension system. The numerical simulations indicate that the optimal fuzzy control can effectively reduce the suspension vibration of the full-vehicle model, especially the pitch angular acceleration and the roll angular acceleration of the sprung mass, and offers better ride comfort, running safety and handling stability than the clipped-optimal control. The design of the fuzzy controller is independent of the control system. Furthermore, fuzzy controller can also be extended to other applications of MR dampers, together with other control strategies.
AB - MR (Magneto-Rheological) dampers have turned out to be a promising device for improving the ride comfort of ground vehicles. However, the current control algorithms for MR dampers, including on-off control and clipped-optimal control, are not sufficiently effective. This paper presents a fuzzy control strategy for an MR damper in order to determine the input voltage according to the desired restoring force. It then goes on using this new strategy to reduce the suspension vibration of a full-vehicle model equipped with 4 MR dampers, where the desired restoring forces are determined through the optimal control of suspension system. The numerical simulations indicate that the optimal fuzzy control can effectively reduce the suspension vibration of the full-vehicle model, especially the pitch angular acceleration and the roll angular acceleration of the sprung mass, and offers better ride comfort, running safety and handling stability than the clipped-optimal control. The design of the fuzzy controller is independent of the control system. Furthermore, fuzzy controller can also be extended to other applications of MR dampers, together with other control strategies.
UR - http://www.scopus.com/inward/record.url?scp=20944438252&partnerID=8YFLogxK
U2 - 10.1142/S0217979205030529
DO - 10.1142/S0217979205030529
M3 - Article
AN - SCOPUS:20944438252
SN - 0217-9792
VL - 19
SP - 1513
EP - 1519
JO - International Journal of Modern Physics B
JF - International Journal of Modern Physics B
IS - 7-9
ER -