Open-set Semantic Segmentation for Point Clouds via Adversarial Prototype Framework

Jianan Li, Qiulei Dong*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

9 引用 (Scopus)

摘要

Recently, point cloud semantic segmentation has attracted much attention in computer vision. Most of the existing works in literature assume that the training and testing point clouds have the same object classes, but they are generally invalid in many real-world scenarios for identifying the 3D objects whose classes are not seen in the training set. To address this problem, we propose an Adversarial Prototype Framework (APF) for handling the open-set 3D semantic segmentation task, which aims to identify 3D unseen-class points while maintaining the segmentation performance on seen-class points. The proposed APF consists of a feature extraction module for extracting point features, a prototypical constraint module, and a feature adversarial module. The prototypical constraint module is designed to learn prototypes for each seen class from point features. The feature adversarial module utilizes generative adversarial networks to estimate the distribution of unseenclass features implicitly, and the synthetic unseen-class features are utilized to prompt the model to learn more effective point features and prototypes for discriminating unseen-class samples from the seen-class ones. Experimental results on two public datasets demonstrate that the proposed APF outperforms the comparative methods by a large margin in most cases.

源语言英语
主期刊名Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
出版商IEEE Computer Society
9425-9434
页数10
ISBN(电子版)9798350301298
DOI
出版状态已出版 - 2023
已对外发布
活动2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, 加拿大
期限: 18 6月 202322 6月 2023

出版系列

姓名Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
2023-June
ISSN(印刷版)1063-6919

会议

会议2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
国家/地区加拿大
Vancouver
时期18/06/2322/06/23

指纹

探究 'Open-set Semantic Segmentation for Point Clouds via Adversarial Prototype Framework' 的科研主题。它们共同构成独一无二的指纹。

引用此