On the Deformation of Thurston’s Circle Packings with Obtuse Intersection Angles

Xiaoxiao Zhang*, Tao Zheng

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

We study Thurston’s circle packings with obtuse intersection angles on closed surfaces. By using combinatorial Ricci/Calabi flows and variational principle, we extend Thurston’s existence theorem for circle packings with non-obtuse intersection angles to those with obtuse intersection angles. As consequences, we generalize the existence and convergence results related to Chow-Luo’s combinatorial Ricci flows (J Differ Geom 63(1):97–129, 2018) and Ge’s combinatorial Calabi flows (Combinatorial Methods and Geometric Equations, Thesis (Ph.D.), Peking University, Beijing, 2012, Trans Am math Soc 370(2):1377–1391, 2018, Adv Math 333:528–533, 2018).

源语言英语
文章编号264
期刊Journal of Geometric Analysis
34
9
DOI
出版状态已出版 - 9月 2024

指纹

探究 'On the Deformation of Thurston’s Circle Packings with Obtuse Intersection Angles' 的科研主题。它们共同构成独一无二的指纹。

引用此