On cluster-tilting objects in a triangulated category with Serre duality

Wuzhong Yang, Jie Zhang*, Bin Zhu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

Let D be a Krull–Schmidt, Hom-finite triangulated category with a Serre functor and a cluster-tilting object T. We introduce the notion of an FΛ-stable support τ-tilting module, induced by the shift functor and the Auslander–Reiten translation, in the cluster-tilted algebra (Formula presented.). We show that there exists a bijection between basic cluster-tilting objects in D and basic FΛ-stable support τ-tilting Λ-modules. This generalizes a result of Adachi–Iyama–Reiten [1]. As a consequence, we obtain that all cluster-tilting objects in D have the same number of nonisomorphic indecomposable direct summands.

源语言英语
页(从-至)299-311
页数13
期刊Communications in Algebra
45
1
DOI
出版状态已出版 - 2 1月 2017

指纹

探究 'On cluster-tilting objects in a triangulated category with Serre duality' 的科研主题。它们共同构成独一无二的指纹。

引用此